

Name:	황 창 규 Chang Kyu Hwang
• Course:	Ph.D. student
Research area:	Thin Film Process / Electrocatalysts
Mobile:	010-2816-7277
● E-mail:	hck0707@korea.ac.kr

SCI Journals

1. Chang-kyu Hwang, Won Tae Hwang, II Doo Kim, Byeong-Kwon Ju and Ki Ro Yoon*

"Perpendicularly Stacked Array of PTFE Nanofibers as a Reinforcement for Highly Durable Composite Membrane in Proton Exchange Membrane Fuel Cells"

(under review)

2. Ki Ro Yoont, <u>Chang-Kyu Hwang</u>[†], Seung-hoon Kim+, Ji-Won Jung, Ji Eon Chae, Jun Kim, Kyung Ah Lee, Ahyoun Lim, Su-Ho Cho, Jitendra Pal Singh, Jong Min Kim, Kihyun Shin, Byung Moo Moon, Hyun S. Park, Hyoung-Juhn Kim, Keun Hwa Chae, Hyung Chul Ham, Il-Doo Kim*, and Jin Young Kim* "Hierarchically assembled cobalt oxynitride and N-doped carbon nanofiber hybrids for efficient bifunctional oxygen electrocatalysis with exceptional regenerative efficiency"

Acs nano 2021, 15, 7, 11218-11230 (main author)

 Ki Ro Yoon, Jong Min Kim, Kyung Ah Lee, <u>Chang-Kyu Hwang</u>, Shedrack G.Akpe, Yeo JinLee, Jitendra Pal Singh, Keun Hwa Chae, Seung Soon Jang, Hyung Chu, Ham*, Jin Young Kim*

"Activity-stability benefits of Pt/C fuel cell electrocatalysts prepared via remote CeO2 interfacial doping" Journal of Power Sources 2021, 496, 229798 (Co-author)

- 4. Wooyong Choit, Jong Min Kimt, <u>Chang-Kyu Hwang</u>t, Jin Young Kim*, and Jae Sung Son*
- "Thiometallate precursors for synthesis of supported Pt and PtNi nanoparticles: Size-focusing of nanoparticles via S ligand capping" Nanoscale 2020. 12. 10498-10504 (main author)
- 5. Chang-Kyu Hwang[†], Jong Min Kim[†], Sehoon Hwang, Chang Hyun Sung, Byung-Moo Moon, Keun-Hwa Chae, Jitendra Pal Singh, Seung-hoon Kim, Hyung Chul Ham, Seunghee Han^{*}, and Jin Young Kim^{*}

"Porous Strained Pt Nanostructured Thin Film Electrocatalysts via Dealloying for PEM Fuel Cells" <u>Advanced Materials Interfaces</u> 2020, 7, 1901326 (main author)

International Conferences

 <u>Chang-Kyu Hwang</u>, Jong Min Kim, Byung-Moo Moon, Jin Young Kim*
"Nanoporous Platinum Thin Films by Oxygen Plasma Dealloying: Highly Active and Stable Electrocatalyst for Oxygen Reduction Reaction" Electronic Materials and Nanotechnology for Green Environment (ENGE), Jeju, Korea, 2018

Domestic Conferences

- 1. <u>Chang-Kyu Hwang</u>, Jong Min Kim, Sung Jong Yoo, Byung-Moo Moon, Jin Young Kim* "Nanoporous Platinum Thin Films by Oxygen Plasma Dealloying: Highly Active and Stable Electrocatalyst for Oxygen Reduction Reaction" The Korean Electrochemical Society, Jeju, Korea, 2020
- 2. <u>Chang-Kyu Hwang</u>, Jong Min Kim, Byung-Moo Moon, Jin Young Kim* "Porous Strained Pt Nanostructured Thin Film Electrocatalysts via Dealloying for PEM Fuel Cells" The Fuel Cell Symposium, Seoul, Korea, 2018
- 3. <u>Chang-Kyu Hwang</u>, Ki Ro Yoon, Byung Moo Moon, Hyoung Juhn Kim, Sung Jong Yoo, Jong Hyun Jang and Jin Young Kim^{*} "Electrochemical Characterization of Cobalt Nitride Anchored Nitrogen-doped Carbon Nanofibers as Bi-functional Catalyst for ORR and OER in an Alkaline Solution"

The Korean Electrochemical Society, Changwon, Korea, 2018

Technical Papers

 Min jung Kimt, <u>Chang-Kyu Hwangt</u>, Byeong-Kwon Ju* "Electrochemical energy applications and research trends with multidimensional structures" electronic science, No. 750, p. 44- 50 (2021. 11)

Patents

- 1. Reinforced composite electrolyte membrane and method of manufacturing same KR Patent, 10-2020-0055450 (Application), 2020
- 2. Method for manufacturing 3D porous thin film catalyst electrode for fuel cell KR Patent. 10-2139494-0000 (Registration). 2020
- 3. Method for manufacturing ordered metal nanowire and method for manufacturing three-dimensional nano-structured metal catalyst for water electrolysis usir KR Patent, 10-2162761-0000 (Registration), 2020