ELSEVIER Contents lists available at ScienceDirect # Sensors and Actuators B: Chemical journal homepage: www.elsevier.com/locate/snb # Enhanced performance of SnO<sub>2</sub> nanowires ethanol sensor by functionalizing with La<sub>2</sub>O<sub>3</sub> Nguyen Van Hieu<sup>a,b</sup>, Hae-Ryong Kim<sup>a</sup>, Byeong-Kwon Ju<sup>c</sup>, Jong-Heun Lee<sup>a,\*</sup> - <sup>a</sup> Department of Materials Science and Engineering, Korea University, Anam-Dong, Sungbuk-Gu, Seoul 136-713, Republic of Korea - b International Training Institute for Materials Science, Hanoi University of Technology, Hanoi, Viet Nam - <sup>c</sup> School of Electrical Engineering, Korea University, Seoul, Republic of Korea #### ARTICLE INFO Article history: Received 22 October 2007 Received in revised form 12 February 2008 Accepted 13 February 2008 Available online 10 March 2008 Keywords: SnO<sub>2</sub> nanowires Ethanol sensor La<sub>2</sub>O<sub>3</sub> Sensitivity Selective detection ### ABSTRACT A SnO<sub>2</sub> nanowires (NWs) sensor was coated with a functional La<sub>2</sub>O<sub>3</sub> layer by solution deposition and its gas sensing characteristics were compared with those of an uncoated SnO<sub>2</sub> NWs sensor. The responses ( $R_a/R_g$ , $R_a$ : resistance in air, $R_g$ : resistance in gas) of an undoped SnO<sub>2</sub> NWs sensor to 100 ppm C<sub>2</sub>H<sub>5</sub>OH and CH<sub>3</sub>COCH<sub>3</sub> were 10.5 and 9.6, respectively, while those to 100 ppm C<sub>3</sub>H<sub>8</sub>, CO, and H<sub>2</sub> ranged from 3.1 to 3.3. The $R_a/R_g$ values of the La<sub>2</sub>O<sub>3</sub>-coated SnO<sub>2</sub> NWs to 100 ppm C<sub>2</sub>H<sub>5</sub>OH and CH<sub>3</sub>COCH<sub>3</sub> increased to 57.3 and 34.9, respectively, but there was no significant change in the responses to C<sub>3</sub>H<sub>8</sub>, CO, and H<sub>2</sub>. The ~5.5-fold enhancement in $R_a/R_g$ to C<sub>2</sub>H<sub>5</sub>OH as well as the selective detection of C<sub>2</sub>H<sub>5</sub>OH in the interference gases such as C<sub>3</sub>H<sub>8</sub>, CO, and H<sub>2</sub> was accomplished simultaneously by coating with La<sub>2</sub>O<sub>3</sub>. In particular, the selective discrimination of C<sub>2</sub>H<sub>5</sub>OH over CH<sub>3</sub>COCH<sub>3</sub>, which is a difficult issue on account their similar chemical nature, was possible. © 2008 Elsevier B.V. All rights reserved. # 1. Introduction Quasi-one-dimensional (Q1D) nanostructures of semiconductor metal oxides (SMO) have attracted considerable attention since the successful synthesis of nanobelts of various semiconductor oxides [1]. Significant progress has been made in the synthesis, characterization, and device application of Q1D nanostructures [2]. These structures with a high aspect ratio (i.e., size confinement in two coordinates) offer better crystallinity, higher integration density, and lower power consumption. In addition, they demonstrate superior sensitivity to surface chemical processes due to the large surface-to-volume ratio and small diameter comparable to the Debye length (a measure of the field penetration into the bulk) [3-5]. Although many different Q1D nanostructures of SMO such as SnO<sub>2</sub>, ZnO, In<sub>2</sub>O<sub>3</sub>, and TiO<sub>2</sub> have been investigated for their gas sensing properties, researchers have paid greater attention to SnO<sub>2</sub> nanowires (NWs)-based sensors because their counterparts such as a thick film, porous pellets and thin films are versatile in being able to sense a variety of gases [6-8] and are commercially available. Thus far, the excellent sensing properties of SnO<sub>2</sub> Q1D nanostructures have been applied to the detection of various gases such as C<sub>2</sub>H<sub>5</sub>OH [9–11], CO [12], NO<sub>2</sub> [11,13], O<sub>2</sub> [12], and O<sub>3</sub> [13]. The selectivity and sensitivity of SnO<sub>2</sub> NWs sensors can be enhanced either by doping with other oxide materials [14–16] or by functionalizing with catalytically active materials [17–19]. Oxide materials are usually doped by the thermal evaporation of a mixed source material [14–16]. Noble catalyst materials are generally deposited by vapor deposition [17,18] or sputtering [19] next to the growth of SnO<sub>2</sub> NWs. A source material for doping with an appropriate vapor pressure is indispensable for the thermal evaporation of mixed materials and there is a limitation in the precise control of the dopant concentration. Moreover, the deposition of catalyst materials after the growth of NWs is relative complex and not cost-effective. Accordingly, a convenient approach to form a functional layer on SnO<sub>2</sub> NWs is essential for enhancing the selectivity and sensitivity, as well as for achieving a simple process at low cost. It is remarkable that most of the studies on SnO<sub>2</sub> NWs sensors for detecting C<sub>2</sub>H<sub>5</sub>OH to date are based on the SnO<sub>2</sub> NWs [9–11]. However, there are no reports on the enhancement of sensitivity and selectivity through functionalization with catalytically active oxide materials. This paper suggests a convenient solution deposition route for functionalizing SnO<sub>2</sub> NWs sensors with La<sub>2</sub>O<sub>3</sub>. La<sub>2</sub>O<sub>3</sub> was selected as the catalytically active material because it has been reported to be a promising promoter for SnO<sub>2</sub>-based C<sub>2</sub>H<sub>5</sub>OH sensors [20,21]. Although the role of La<sub>2</sub>O<sub>3</sub> in enhancing the sensitivity to C<sub>2</sub>H<sub>5</sub>OH is relatively well known, the effect of La<sub>2</sub>O<sub>3</sub> doping on the sensing <sup>\*</sup> Corresponding author. Tel.: +82 2 3290 3282; fax: +82 2 928 3584. E-mail address: jongheun@korea.ac.kr (J.-H. Lee). of other gases and the selective detection of a specific gas is unclear In this study, SnO<sub>2</sub> NWs were grown by thermal evaporation and the SnO<sub>2</sub> NWs sensors were functionalized with La<sub>2</sub>O<sub>3</sub> by dropping a La(NO<sub>3</sub>)<sub>3</sub> solution at different concentrations. The sensing characteristics to C<sub>2</sub>H<sub>5</sub>OH, CH<sub>3</sub>COCH<sub>3</sub>, C<sub>3</sub>H<sub>8</sub>, CO, and H<sub>2</sub> of the SnO<sub>2</sub> NWs sensors without and with the functional La<sub>2</sub>O<sub>3</sub> layer were compared. The main focus was placed on the role of La<sub>2</sub>O<sub>3</sub> in enhancing the sensitivity to C<sub>2</sub>H<sub>5</sub>OH, the selective detection of C<sub>2</sub>H<sub>5</sub>OH in the presence of interference gases such as CH<sub>3</sub>COCH<sub>3</sub>, C<sub>3</sub>H<sub>8</sub>, CO and H<sub>2</sub>, and the gas response time. ### 2. Experimental #### 2.1. Growth of SnO<sub>2</sub> nanowires The schematic diagram of experimental setup for the growth of SnO<sub>2</sub> NW was shown in Fig. 1. The SnO<sub>2</sub> NWs were grown in a quartz tube located in a horizontal furnace with a sharp temperature gradient. Both ends of the quartz tube were sealed with rubber O-rings. The ultimate vacuum for this configuration was $\sim 2 \times 10^{-3}$ torr. The carrier gas-line (Ar) and O2 gas-line were connected to the leftend of a quartz tube and their flow rate was modulated by a digital mass-flow-control system. The right end of the quartz tube was connected to a rotary pump through a needle valve in order to maintain a desired pressure in the tube. High-purity SnO<sub>2</sub> powder (Merck, 99.9%) was placed in one end of an alumina boat as an evaporation source. In the same boat, an alumina substrate with a previously deposited Au catalyst layer (thinness: ~10 nm) was placed approximately 2-3 cm from the source along the direction of gas flow. The entire boat was covered with an alumina plate. A small opening was left to allow the gas to flow into the assembly. The complete unit was placed into the quartz tube for the NWs growth. The growth process was divided into two steps. Initially, the quartz tube was evacuated to $10^{-2}$ torr and purged several times with Ar gas. Subsequently, the furnace temperature was increased to 960 °C for 30 min. During this step, only Ar gas was introduced into the furnace at a flow rate of 50 sccm and the pressure was maintained in the range of 100-200 torr. When the temperature reached 960 °C, oxygen gas was added to the quartz tube at a flow rate of 0.5 sccm, and the process was maintained for 2 h during the growth of the SnO<sub>2</sub> NWs. The SnO<sub>2</sub> NWs were analyzed by scanning electron microscopy (SEM, Hitachi S-4300), transmission electron microscopy (TEM, FEI Tecnai 20), and X-ray diffraction (XRD, Rigaku D/MAX-2500V/PC). Fig. 2. Schematic diagram of the sensor configuration and experimental procedures. ## 2.2. Sensor fabrication and characterization Fig. 2 shows a schematic diagram of sensor fabrication and characterization. Comb-shape Au electrodes were screen printed on the Fig. 1. Experimental setup for the growth of SnO<sub>2</sub> nanowires. top of the SnO<sub>2</sub> NWs grown on an alumina substrate and subsequently heat-treated at 600 °C for 5 h. The sensor was installed in a quartz tube and the furnace temperature was stabilized at a constant sensing temperature (400 °C). The gas concentration was controlled by changing the mixing ratio of the parent gases (200 ppm $C_2H_5OH$ , 100 ppm $C_3COCH_3$ , 200 ppm $C_3H_8$ , 100 ppm $C_3COCH_3$ , 200 ppm $C_3COCH_3$ C The effect of La $_2$ O $_3$ doping on the sensitivity and selectivity of the SnO $_2$ sensor was examined by placing a droplet of 0.05, 0.5, and 1 M La(NO $_3$ ) $_3$ aqueous solutions (volume = $\sim$ 0.87 $\mu$ l) onto the SnO $_2$ NW sensors using a micropipette (DV10, High Tech Labs). The sensor was heat-treated at 600 °C for 1 h to remove any moisture and to convert the La(NO $_3$ ) $_3$ into La $_2$ O $_3$ . The gas sensing characteristics of the La $_2$ O $_3$ -doped SnO $_2$ NWs sensor were measured under identical experimental conditions used for the pure SnO $_2$ NWs sensor. The sensing characteristics before and after La $_2$ O $_3$ doping were compared. #### 3. Results and discussion #### 3.1. Microstructural characterizations Fig. 3 shows the morphology of the as-prepared $SnO_2$ NWs. Uniform $SnO_2$ NWs with homogeneous entanglement were produced on a large area (1 cm $\times$ 5 cm). The diameter of the $SnO_2$ NWs ranged from 50 to 100 nm and the lengths ranged from several tens to hundreds of micrometers. All the NWs were smooth and uniform along the fiber axis. $SnO_2$ NWs with a catalyst particle on its tip (Fig. 3(c)) were observed. EDS analysis (not shown) revealed that the catalyst particle was composed of Au, Sn, and O, which indicates that the $SnO_2$ NWs were grown via a vapor–liquid–solid (VLS) mechanism [1–3,11,13]. The morphology of $SnO_2$ NWs functionalized with $La_2O_3$ using a 0.5 M $La(NO_3)_3$ solution was shown in Fig. 4. In the low magnification image (Fig. 4(a)), it was difficult to observe the $La_2O_3$ -related phase. However, the second phases could be frequently found on the surface of $SnO_2$ NWs in the high-magnification SEM and TEM images (see arrows in Fig. 4 (b–d)), which were identified not as catalyst particles but as $La_2O_3$ -containing phase according to EDS analysis. The XRD patterns of the as-synthesized $SnO_2$ NWs (Fig. 5) were indexed to the tetragonal rutile structure, which agrees well with JCPDS 77-0450. According to the JCPDS file, the intensity ratio between the (110) and (101) peaks is 1000/767. However, the intensity ratio between the (110) and (101) peaks in Fig. 5 was 653/1000, which suggests a preferred orientation. #### 3.2. Gas sensing properties Fig. 6 shows the responses to $C_2H_5OH$ , $CH_3COCH_3$ , $C_3H_8$ , CO, and $H_2$ of the $SnO_2$ NWs sensor before and after $La_2O_3$ doping using a 0.5 M $La(NO_3)_3$ aqueous solution. All the gas concentrations were fixed to 100 ppm for comparison. In the undoped $SnO_2$ NWs sensor, the responses ( $S=R_a/R_g$ ) to $C_2H_5OH$ and $CH_3COCH_3$ were 10.5 and 9.6, respectively. These responses are higher than those for $C_3H_8$ (S=3.3), CO(S=3.3), and $CH_2$ gases (C=3.1). Therefore, the selective sensing of $C_2H_5OH$ and $CH_3COCH_3$ in the presence of $C_3H_8$ , CO, and C=3.30, and C=3.31, C=3.32, respectively, which are significantly higher than those of the pure C=3.33, respectively, which are significantly higher than those of the pure C=3.33, C=3.33, and C=3.33, and C=3.33, respectively, which are similar to the undoped C=3.33, and C=3.33, respectively, which are similar to the undoped C=3.33, and C=3.33, respectively, which are similar to the undoped C=3.33, and C=3.33, respectively, which are similar to the undoped C=3.33, and C=3.33, respectively, which are similar to the undoped C=3.33, and C=3.33, respectively, which are similar to the undoped C=3.33, and C=3.33, respectively, which are similar to the undoped C=3.33, and C=3.33, respectively, which are similar to the undoped C=3.33, and C=3.33, respectively, which are similar to the undoped C=3.33, and C=3.33, respectively, which are similar to the undoped C=3.33, respectively. The level of $La_2O_3$ doping was controlled by varying the concentrations of the $La(NO_3)_3$ aqueous solution from 0.05 to 1 M. The Fig. 3. SEM and TEM images of SnO<sub>2</sub> nanowires: (a) low resolution SEM image; (b) high resolution SEM image; (c) high resolution SEM image showing catalytic particle on top of SnO<sub>2</sub> nanowire; and (d) high resolution TEM image. Fig. 4. SEM and TEM images of $SnO_2$ nanowires functionalized with $La_2O_3$ using a 0.5 M $La(NO_3)_3$ solution after heat-treatment at 600 °C for 5 h: (a) low resolution SEM image; (b) high resolution SEM image; and (c), (d) high resolution TEM images. gas sensing characteristics of the sensors before and after La<sub>2</sub>O<sub>3</sub> doping were compared using a polar plot (Fig. 7). Three undoped SnO<sub>2</sub> NW sensors showed similar sensing characteristics (Fig. 7, empty circles in left three diagrams), which confirmed the reproducibility of the SnO<sub>2</sub> NWs sensors. After doping with La<sub>2</sub>O<sub>3</sub>, the responses to C<sub>2</sub>H<sub>5</sub>OH and CH<sub>3</sub>COCH<sub>3</sub> increased 2–6 times while those to C<sub>3</sub>H<sub>8</sub>, CO, and H<sub>2</sub> remain approximately the same. This indicates that La<sub>2</sub>O<sub>3</sub> doping enhances the responses to C<sub>2</sub>H<sub>5</sub>OH and CH<sub>3</sub>COCH<sub>3</sub>. In order to quantify the effect of La $_2$ O $_3$ on the gas responses, the ratio between the responses to a specific gas before and after La $_2$ O $_3$ doping (RR $_{\rm gas}$ = $S_{\rm gas}$ (La $_2$ O $_3$ -SnO $_2$ )/ $S_{\rm gas}$ (SnO $_2$ )) were calculated and plotted in right three diagrams, as shown in Fig. 7. For example, RR $_{\rm ethanol}$ is the ratio between the response to 100 ppm C $_2$ H $_5$ OH of the La $_2$ O $_3$ -doped SnO $_2$ NWs and that of the undoped SnO $_2$ NWs. When doped with La $_2$ O $_3$ using a 0.05 M La(NO $_3$ ) $_3$ solution, the RR $_{\rm ethanol}$ and RR $_{\rm acetone}$ values were 3.7 and 3.2, respectively (Fig. 7 right upper). It should be noted that the RR $_{\rm ethanol}$ value was increased to 5.5 by doping La $_2$ O $_3$ using a 0.5 M La(NO $_3$ ) $_3$ solution while the RR $_{\rm acetone}$ value was increased to 3.6 (Fig. 7 right mid- Fig. 5. X-ray diffraction pattern of the undoped SnO<sub>2</sub> nanowires. dle). A further increase in the $La_2O_3$ concentration decreased the $RR_{ethanol}$ and $RR_{acetone}$ values to 2.6 and 1.9, respectively (Fig. 7 right below). This shows that the concentration of $La_2O_3$ should be optimized in order to maximize the sensing responses to $C_2H_5OH$ and $CH_3COCH_3$ . The decomposition of $C_2H_5OH$ at high temperature is dependent upon the acid-base properties of the oxide catalyst used [12]. $$C_2H_5OH(g) \rightarrow CH_3CHO(g) + H_2(g)(basicoxide)$$ (1) $$C_2H_5OH(g) \rightarrow C_2H_4(g) + H_2O(g)(acidicoxide)$$ (2) **Fig. 6.** Gas responses to 100 ppm of $C_2H_5OH$ , $CH_3COCH_3$ , $C_3H_8$ , CO, and COMB at COMB of (a) undoped COMB nanowires and (b) COMB Lacebox of COMB nanowires using na Fig. 7. Polar plots of the gas responses to $C_2H_5OH$ , $CH_3COCH_3$ , $C_3H_8$ , CO, and $H_2$ before and after doping with $La_2O_3$ using 0.05, 0.5, and 1.0 M $La(NO_3)_3$ solutions, and the ratio between the responses to a specific gas before and after $La_2O_3$ doping. Gas sensing characteristics were measured at $400\,^{\circ}C$ , and the concentration of all gases was fixed to $100\,\mathrm{ppm}$ . Jinkawa et al. [20] reported that the sensitivity to $C_2H_5OH$ is increased 10–40 times by the addition of basic oxides such as $C_{S2}O$ , $La_2O_3$ , and $Gd_2O_3$ . $CH_3CHO(g)+H_2(g)$ in a basic oxide induces a larger increase in conductance than $C_2H_4$ (g) in an acidic oxide. Therefore, the 5.5-fold increase in $S_{ethanol}$ by $La_2O_3$ doping can be attributed to the promotion of reaction (1). The doping of different La<sub>2</sub>O<sub>3</sub> concentrations increased the RR<sub>ethanol</sub> value more than the RR<sub>acetone</sub> value. The $S_{\text{ethanol}}/S_{\text{acteone}}$ ratio, which is the degree of selective detection to C<sub>2</sub>H<sub>5</sub>OH in the presence of CH<sub>3</sub>COCH<sub>3</sub>, was ~1.10 for the undoped SnO<sub>2</sub> NW sensors. In this circumstance, discrimination between C<sub>2</sub>H<sub>5</sub>OH and CH<sub>3</sub>COCH<sub>3</sub> is almost impossible. Indeed, the $S_{\text{ethanol}}$ value in the most oxide semiconductor gas sensors was reported to be similar to the $S_{\text{acetone}}$ value [21–27]. The reason for this can be found from the similar reaction intermediates, CH<sub>3</sub>CHO(g), which is formed by the decompositions of C<sub>2</sub>H<sub>5</sub>OH [12] and CH<sub>3</sub>COCH<sub>3</sub> [28]. In this study, the $S_{\rm ethanol}/S_{\rm acteone}$ ratio increased to 1.38, 1.64, and 1.39 when doped with La<sub>2</sub>O<sub>3</sub> using the 0.05, 0.5, and 1 M La(NO<sub>3</sub>)<sub>3</sub> solutions, respectively. This means that doping with La<sub>2</sub>O<sub>3</sub> promotes the sensing reaction to $C_2H_5OH$ more than to $CH_3COCH_3$ . Accordingly, La<sub>2</sub>O<sub>3</sub> doping not only enhances the response to $C_2H_5OH$ to a great extent but also enables the selective detection of $C_2H_5OH$ in the presence of $CH_3COCH_3$ , which is a challenging issue. The dynamic response transients were obtained for the undoped and La<sub>2</sub>O<sub>3</sub>-functionalized SnO<sub>2</sub> NWs sensors (Fig. 8). The 90% response time for gas exposure ( $t_{90\%(air-to-gas)}$ ) and that for recovery ( $t_{90\%(gas-to-air)}$ ) were calculated from the resistance–time data shown in Figs. 6 and 8 and are summarized in Table 1. In the undoped SnO<sub>2</sub> NWs sensor, the $t_{90\%(air-to-gas)}$ values in the sensing of C<sub>2</sub>H<sub>5</sub>OH and CH<sub>3</sub>COCH<sub>3</sub> ranged from 2 to 4s, while the $t_{90\%(gas-to-air)}$ value ranged from 98 to 136 s. The $t_{90\%(air-to-gas)}$ values in the sensing of C<sub>3</sub>H<sub>8</sub>, CO, and H<sub>2</sub> were 9-13 s while the $t_{90\%(gas-to-air)}$ value decreased to 62–65 s. This shows that the sensing mechanisms of C<sub>2</sub>H<sub>5</sub>OH and CH<sub>3</sub>COCH<sub>3</sub> are different from those of C<sub>3</sub>H<sub>8</sub>, CO, and H<sub>2</sub>. Note that the $t_{90\%(air-to-gas)}$ values in the range of 2–4s in sensing $C_2H_5OH$ and $CH_3COCH_3$ and those in the range of 9-13 s in sensing C<sub>3</sub>H<sub>8</sub>, CO, and H<sub>2</sub> are quite short considering that the sensor response times in the most of the literature range from 60 to 120 s [10,29,30]. This can be explained by the rapid in-diffusion of gas towards the sensing surface due to the less-agglomerated network structure of NWs. When doped with $La_2O_3$ , both the $t_{90\%(air-to-gas)}$ values and $t_{90\%(gas-to-air)}$ values were shortened compared with those of the undoped SnO<sub>2</sub> NWs sensors. Therefore, doping with La<sub>2</sub>O<sub>3</sub> is a promising approach for enhancing the sensitivity and selectivity to C<sub>2</sub>H<sub>5</sub>OH without deteriorating the rapid sensor response. The sensor resistance in air $(R_a)$ was increased by doping with La<sub>2</sub>O<sub>3</sub>, as shown in Fig. 8. Kugishima et al. [31] reported that the $R_a$ value of undoped SnO<sub>2</sub> at 400 °C is increased by $\sim$ 1.5 orders of magnitude by doping with 0.5 wt% La<sub>2</sub>O<sub>3</sub>. They [32] also reported that the $R_a$ value of Sb-doped SnO<sub>2</sub> at 400 °C is increased by up to $\sim$ 5 orders of magnitude with increasing La<sub>2</sub>O<sub>3</sub> doping concentrations from 0.5 to 5 wt%. A further increase in the La<sub>2</sub>O<sub>3</sub> concentration to 7 wt% decreased the $R_a$ value. It is interesting that the response **Table 1** The 90% response time for the gas exposure $(t_{90\%(air-to-gas)})$ and that for recovery $(t_{90\%(gas-to-air)})$ (measured at 400 °C) | Gas | SnO <sub>2</sub> NWs | | La <sub>2</sub> O <sub>3</sub> -SnO <sub>2</sub> NWs | | |-------------------------------------------|---------------------------------------|-----------------------------------|------------------------------------------------------|-----------------------------------| | | $\overline{t_{90\%(air-to-gas)}}$ (s) | $t_{90\%(\text{gas-to-air})}$ (s) | $\overline{t_{90\%(\text{air-to-gas})}}$ (s) | $t_{90\%(\text{gas-to-air})}$ (s) | | C <sub>2</sub> H <sub>5</sub> OH 10 ppm | 4 | 98 | 1 | 88 | | $C_2H_5OH 50 ppm$ | 3 | 114 | 1 | 81 | | $C_2H_5OH 100 ppm$ | 2 | 136 | 1 | 110 | | CH <sub>3</sub> COCH <sub>3</sub> 100 ppm | 2 | 127 | 1 | 78 | | C <sub>3</sub> H <sub>8</sub> 100 ppm | 9 | 65 | 6 | 47 | | CO 100 ppm | 12 | 65 | 7 | 54 | | H <sub>2</sub> 100 ppm | 13 | 62 | 8 | 40 | to 20 ppm ethylene oxide (C2H4O) increases until 5 wt% La2O3 and then decreases at 7 wt% La<sub>2</sub>O<sub>3</sub>. This reflects that the response $(R_a/R_g)$ is related to the $R_a$ value and can be understood from the finding that the relative decrease of sensor resistance becomes more evident at the higher Ra when a constant amount of electrons is supplied by the gas sensing reaction at the surface. The $R_a$ values for the three undoped SnO<sub>2</sub> NWs sensors were 11.7, 14.1, and $8.5\,\mathrm{M}\Omega$ , respectively. These values increased to 66.8, 415.4, and $181.0\,\mathrm{M}\Omega$ after doping with $La_2O_3$ using 0.05, 0.5, and 1.0 M La(NO<sub>3</sub>)<sub>3</sub> aqueous solutions, respectively. These correspond to a 7.8-, 29.6-, and 15.4-fold increase in $R_a$ , respectively. Although further systematic studies will be necessary, La<sub>2</sub>O<sub>3</sub> appears to play a dual roles as an acceptor and a catalytic promoter and the highest enhancement of the C<sub>2</sub>H<sub>5</sub>OH response with the La<sub>2</sub>O<sub>3</sub> coating using a 0.5 M La(NO<sub>3</sub>)<sub>3</sub> aqueous solution can be understood in a similar viewpoint. The relative contributions between the catalytic activation and the increase in $R_a$ by doping with La<sub>2</sub>O<sub>3</sub> need to be studied in order to better understand the detailed C<sub>2</sub>H<sub>5</sub>OH sensing mechanism of La<sub>2</sub>O<sub>3</sub>-doped SnO<sub>2</sub> sensors. One of important applications for a $C_2H_5OH$ sensor is the screening of inebriated drivers. Under heavy traffic conditions, the ambient concentrations of CO can increase up to 100 ppm as a result of emission from gasoline engines [33]. In addition, $CH_3COCH_3$ **Fig. 8.** Response transients to 10-100 ppm $C_2H_5OH$ of (a) undoped $SnO_2$ nanowires sensor and (b) $La_2O_3$ -doped $SnO_2$ nanowires sensor using a 0.5 M $La(NO_3)_3$ solution (measured at $400\,^{\circ}$ C). Fig. 9. Response to 10-100 ppm $C_2H_5OH$ of the $SnO_2$ NWs sensors before and after the doping with $La_2O_3$ using a 0.5 M $La(NO_3)_3$ solution (measured at $400^{\circ}$ C). vapor can be contained in the expiration from a diabetes patient [34], which can reach concentrations up to 300 ppm in the case of an aceto-acidotic coma related to diabetes mellitus [35]. In this respect, $SnO_2$ NWs functionalized with $La_2O_3$ using a 0.5 M $La(NO_3)_3$ solution can be used to detect $C_2H_5OH$ selectively in the presence of interfering gases such as CO and $CH_3COCH_3$ although the cross-sensitivity to $CH_3COCH_3$ should be decreased further. Fig. 9 shows the responses to 10–100 ppm $C_2H_5OH$ of undoped and $La_2O_3$ -doped $SnO_2$ NWs sensors. The response to 10 ppm increased from 5.1 to 22.7 and that to 100 ppm increased from 22.7 to 62. This is higher than $SnO_2$ -nanobelts ( $\Delta G/G$ = 41.2 for 250 ppm $C_2H_5OH$ ) [10], Sb-doped $SnO_2$ NWs ( $R_a/R_g$ = $\sim$ 3 for 800 ppm $C_2H_5OH$ ) [14], indium-doped $SnO_2$ NWs ( $R_a/R_g$ = $\sim$ 7 for 50 ppm $C_2H_5OH$ ) [15], ZnO NWs ( $R_a/R_g$ = $\sim$ 15 for 100 ppm $C_2H_5OH$ ) [36], ZnSnO<sub>3</sub> NWs ( $R_a/R_g$ = $\sim$ 18 for 100 ppm $C_2H_5OH$ ) [37], $In_2O_3$ NWs ( $R_a/R_g$ = $\sim$ 2 for 100 ppm $C_2H_5OH$ ) [38], and $V_2O_5$ NWs ( $R_a/R_g$ = $\sim$ 2 for 200 ppm $C_2H_5OH$ ) [39], and is comparable to the results of other $SnO_2$ -nanobelts ( $\Delta G/G$ = 25 for 10 ppm $C_2H_5OH$ ) [11]. This clearly shows that these $SnO_2$ NWs with a $La_2O_3$ functional layer have the potential to achieve ultra-high gas sensitivity. Finally, it should be noted that the sensor fabrication platform in this study is quite simple and inexpensive. A coating of a functional La<sub>2</sub>O<sub>3</sub> layer by solution deposition and the control of the doping concentration is very convenient compared with the element doping in the stage of NWs growth. This suggests that a solution-based coating of a functional layer on SnO<sub>2</sub> NWs is a powerful approach for accomplishing high sensitivity and selectivity without deteriorating the gas response time. This method can be easily used to develop semiconducting NWs sensors functionalized with different catalyst materials such as Pd, Pt, or Au, which has great potential in the sensing of multiple gases using a sensor array. #### 4. Conclusion A La<sub>2</sub>O<sub>3</sub> layer was coated on SnO<sub>2</sub> nanowires gas sensors by the deposition of La(NO<sub>3</sub>)<sub>3</sub> aqueous solutions, and its effect on the gas sensing characteristics to C<sub>2</sub>H<sub>5</sub>OH, CH<sub>3</sub>COCH<sub>3</sub>, C<sub>3</sub>H<sub>8</sub>, CO and H<sub>2</sub> were investigated. The La<sub>2</sub>O<sub>3</sub> coating using a 0.5 M La (NO<sub>3</sub>)<sub>3</sub> aqueous solution greatly increased the responses to C<sub>2</sub>H<sub>5</sub>OH ( $\sim$ 5.5 times) and CH<sub>3</sub>COCH<sub>3</sub> ( $\sim$ 3.6 times) but did not vary the responses to C<sub>3</sub>H<sub>8</sub>, CO, and H<sub>2</sub>. The discrimination between C<sub>2</sub>H<sub>5</sub>OH and CH<sub>3</sub>COCH<sub>3</sub>, which is a challenging issue due to their similar chemical nature, was accomplished by the more active promotion of C<sub>2</sub>H<sub>5</sub>OH sensing over CH<sub>3</sub>COCH<sub>3</sub> sensing. The deposition of La<sub>2</sub>O<sub>3</sub> via the solution route, suggested in this study, provides an effective and convenient route for accomplishing both high sensitivity and high selectivity to C<sub>2</sub>H<sub>5</sub>OH without deteriorating the gas response kinetics. #### Acknowledgements This work was supported in part by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MOST) (No. R01-2005-000-10648-0(2005)) and by the IT R&D program of MIC/IITA [2006-S-078-02, Environmental Sensing and Alerting System with Nano-wire and Nano-tube]. We thank for government for financial supports. #### References - [1] Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxide, Science 291 (2001) 1947–1949. - [2] J.G. Lu, P. Chang, Z. Fan, Quasi-one-dimensional metal oxide materials—synthesis, properties and applications, Mater. Sci. Eng. R 52 (2006) 49–91. - [3] E. Comini, Metal oxide nano-crystals for gas sensing, Anal. Chim. Acta 568 (2006) 28–40. - [4] A. Kolmakov, M. Moskovits, Chemical sensing and catalysis by onedimensionalmetal-oxide nanostructures, Ann. Rev. Mater. Res. 34 (2004) 150–180. - [5] X.-J. Huang, Y.-K. Choi, Chemical sensors based on nanostructured materials, Sens. Actuators B 122 (2006) 659–671. - [6] N. Yamazoe, Toward innovations of gas sensor technology, Sens. Actuators B 108 (2005) 2–14 (review). - [7] Y. Shimizu, M. Egashira, Basic aspects and challenges of semiconductor gas sensors, MRS Bull. 24 (1999) 18–24. - [8] C.C. Wang, S.A. Akbar, M.J. Madou, Ceramic based resistive sensors, J. Electroceram. 2 (4) (1998) 273–282. - [9] Y.J. Chen, X.Y. Xue, Y.G. Wang, T.H. Wanga, Synthesis and ethanol sensing characteristics of single crystalline SnO<sub>2</sub> nanorods, Appl. Phys. Lett. 87 (23351) (2005) 01–03. - [10] E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, Z.L. Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Appl. Phys. Lett. 81 (2002) 1869–1871. - [11] E. Comini, G. Faglia, G. Sberveglieri, D. Calestani, L. Zanotti, M. Zha, Tin oxide nanobelts electrical and sensing properties, Sens. Actuators B 111–112 (2005) 2–6 - [12] A. Kolmakov, Y. Zhang, G. Cheng, M. Moskovits, Detection of CO and O<sub>2</sub> using tin oxide nanowires sensors, Adv. Mater. 15 (2003) 997–1000. - [13] G. Sberveglieri, C. Baratto, E. Comini, G. Faglia, M. Ferroni, A. Ponzoni, A. Vomiero, Synthesis and characterization of semiconducting nanowires for gas sensing, Sens. Actuators B 121 (2007) 208–213. - [14] Q. Wan, T.H. Wang, Single-crystalline Sb-doped SnO<sub>2</sub> nanowires: synthesis and gas sensor application, Chem. Commun. (2005) 3841–3843. - [15] X.Y. Xue, Y.J. Chen, Y.G. Liu, S.L. Shi, Y.G. Wang, T.H. Wang, Synthesis and ethanol sensing properties of indium-doped tin oxide nanowires, Appl. Phys. Lett. 88 (2005) 201007. - [16] N.S. Ramgir, I.S. Mulla, K.P. Vijayamohanan, A room temperature nitric oxide sensor actualized from Ru-doped SnO<sub>2</sub> nanowires, Sens. Actuators B 107 (2005) 708–715. - [17] A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Enhanced gas sensing by individual SnO<sub>2</sub> nanowires and nanobelts functionalized with Pd catalyst particles, Nano Lett. 5 (2005) 667–673. - [18] L.H. Qian, K. Wang, Y. Li, H.T. Fang, Q.H. Lu, X.L. Ma, CO sensor based on Audecorated SnO<sub>2</sub> nanobelt, Mater. Chem. Phys. 100 (2006) 82–84. - [19] H.T. Wang, B.S. Kang, R. Ren, L.C. Tien, P.W. Sadik, D.P. Norton, S.J. Pearton, Hydrogen-selective sensing at room temperature with ZnO nanorods, Appl. Phys. Lett. 86 (2005) 243503. - [20] T. Jinkawa, G. Sakai, J. Tamaki, N. Miura, N. Yamazoe, Relationship between ethanol gas sensitivity and surface catalytic property of tin oxide sensors modified with acidic or basic oxides, J. Mol. Catal. A Chem. 155 (2000) 193–200. - [21] I. Stambolova, K. Konstantinov, S. Vassilev, P. Peshev, Ts. Tsacheva, Lanthanum doped SnO<sub>2</sub> and ZnO thin films sensitive to ethanol and humidity, Mater. Chem. Phys. 63 (2000) 104–108. - [22] B.L. Zhu, C.S. Xie, W.Y. Wang, K.J. Huang, J.H. Hu, Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO<sub>2</sub>, Mater. Lett. 58 (2004) 624–629. - [23] H. Gong, Y.J. Wang, S.C. Teo, L. Huang, Interaction between thin-film tin oxide gas sensor and five organic vapors, Sens. Actuators B 54 (1999) 232–235. - [24] X. Li, G. Zhang, F. Cheng, B. Guo, J. Chen, Synthesis characterization and gas-sensor application of WO<sub>3</sub> nanocuboids, J. Electrochem. Soc. 153 (2006) H133\_H137 - [25] Z. Jing, Y. Wang, S. Wu, Preparation and gas sensing properties of pure and doped $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> by an anhydrous solvent method, Sens. Actuators B 113 (2006) 177–181. - [26] Y. Jiang, W. Song, C. Xie, A. Wang, D. Zeng, M. Hu, Electrical conductivity and gas sensitivity to VOCs of V-doped ZnFe<sub>2</sub>O<sub>4</sub> nanoparticles, Mater. Lett. 60 (2006) 1374–1378. - [27] Z. Jie, H. Li-Hua, G. Shan, Z. Hui, Z. Jing-Gui, Alcohols and acetone sensing properties of SnO<sub>2</sub> thin films deposited by dip-coating, Sens. Actuators B 115 (2006) 460–464. - [28] T. Tsuboi, K. Ishii, S. Tamura, Thermal oxidation of acetone behind reflected shock wave, in: Proceedings of the 17th International Colloquium on the Dynamics of Explosions and Reactive Systems, Heidelberg, Germany, July 25–30, 1999. - [29] Y.-K. Jun, H.-S. Kim, J.-H. Lee, S.-H. Hong, CO sensing performance in micro-arc oxidized TiO<sub>2</sub> films for air quality control, Sens. Actuators B 120 (2006) 69–73. - [30] K. Galatsis, Y.X. Li, W. Wlodarski, E. Comini, G. Faglia, G. Sberveglieri, Semiconductor MoO<sub>3</sub>-TiO<sub>2</sub> thin film gas sensors, Sens. Actuators B 77 (2001) 472-477. - [31] M. Kugishima, G. Sakai, K. Shimanoe, N. Yamazoe, Development of SnO<sub>2</sub>-based gas sensor sensitive to dilute ethylene oxide in air, Sens. Actuators B 108 (2005) 130–135 - [32] M. Kugishima, K. Shimanoe, N. Yamazoe, $C_2H_4O$ sensing properties for thick film sensor using $La_2O_3$ -modified $SnO_2$ , Sens. Actuators B 118 (2006) 171–176. - [33] H. Nakagawa, S. Okazaki, S. Asakura, K. Fukuda, H. Akimoto, S. Takahashi, S. Shigemori, An automated car ventilation system, Sens. Actuators B 65 (2000) 133–137. - [34] S.V. Ryabsev, A.V. Shaposhnick, A.N. Lukin, E.P. Domashevskaya, Application of semiconductor gas sensors for medical diagnostics, Sens. Actuators B 59 (1999) 26–29 - [35] M. Fleischer, E. Simon, E. Rumpel, H. Ulmer, M. Harbeck, M. Wandel, C. Fietzek, U. Weimar, H. Meixner, Detection of volatile compounds correlated to human diseases trough breath analysis with chemical sensors, Sens. Actuators B 83 (2002) 245–249. - [36] Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett. 84 (2004) 3654–3656. - [37] X.Y. Xue, Y.J. Chen, Y.G. Wang, T.H. Wang, Synthesis and ethanol sensing properties of ZnSnO₃ nanowires, Appl. Phys. Lett. 84 (2005) 233101. - [38] C. Xiangfeng, W. Caihong, J. Dongli, Z. Chenmou, Ethanol sensor based on indium oxide nanowires prepared by carbothermal reduction method, Chem. Phys. Lett. 399 (2004) 461–464. - [39] J. Liu, X. Wang, Q. Peng, Y. Li, Vanadium pentoxide nanobelts: highly selective and stable ethanol sensor materials, Adv. Mater. 17 (2005) 764–767. ## Biographies **Nguyen Van Hieu** received his MSc degree from the International Training Institute for Material Science (ITIMS), Hanoi University of Technology (HUT) in 1997 and PhD degree from the Department of Electrical Engineering, University of Twente, Netherlands in 2004. Since 2004, he has been a research lecturer at the ITIMS. In 2007, he worked as a post-doctoral fellow, Korea University. His current research interests include the nano-architectures of carbon nanotubes, oxide semiconductors and oxide semiconductor nanowires for chemical sensors. **Hae-Ryong Kim** studied materials science and engineering and received his BS and MS degrees from Korea University in 2005 and 2007, respectively. He is currently a doctoral course candidate at Korea University. His research topic is the preparation of sensor materials via sol–gel routes. **Byeong-Kwon Ju** received his ME degree from University of Seoul in 1988. He received his PhD degree from the Department of Electronic Engineering, Korea University in 1995. He joined the Korea Institute of Science and Technology from 1995 to 2005. Since 2005, he is a professor of the Department of Electrical Engineering, Korea University. His current research interests include the application of carbon nanotubes to sensor, MEMS, and nanotechnology. **Jong-Heun Lee** has been an Associate Professor at Korea University since 2003. He received his BS, MS, and PhD degree from Seoul National University in 1987, 1989, and 1993, respectively. He has developed automotive air-fuel-ratio sensors at Samsung Advanced Institute of Technology over a 7-year period. His current research interests include chemical sensors, solid electrolyte and functional electroceramics.