

Ceramics International 30 (2004) 1543-1546

CERAMICS INTERNATIONAL

www.elsevier.com/locate/ceramint

Compositional dependence of the properties of ferroelectric $Pb(Zr_xTi_{1-x})O_3$ thin film capacitors deposited on single-layered PtRhO_y electrode barriers

Kwang Bae Lee^{a,*}, Kyung Haeng Lee^a, Byeong Kwon Ju^b

^a Department of Computer & Electronic Physics, Sangji University, 660 Woosandong, Wonju, Gangwondo 220-702, Republic of Korea
^b Display & Nano-Device Laboratory, Microsystems Research Center, Korea Institute of Science & Technology, 39-1 Hawolgokdong,

Sungbukgu, Seoul 136-791, Republic of Korea

Received 29 November 2003; accepted 22 December 2003

Available online 6 May 2004

Abstract

Single-layered PtRhO_y thin films were investigated as electrode barriers for ferroelectric Pb(Zr_xTi_{1-x})O₃ (PZT) (x = 0.2-0.8) thin film capacitors. PtRhO_y thin films were deposited directly on n+ Si wafers by means of the reactive sputtering method. PtRhO_y/PZT/PtRhO_y/n+ Si capacitors showed well-defined *P*–*E* hysteresis loops. The remanent polarizations, as well as the polarization loss after the switching repetitions, were varied with the ratio of Zr/Ti. Especially, Pb(Zr_{0.4}Ti_{0.6})O₃ thin film capacitor showed the superior ferroelectric properties, such as the *P*–*E* hysteresis characteristics and the polarization fatigue. The typical remanent polarization and the coercive field of this capacitor were 22 μ C/cm² and 87 kV/cm, respectively, and the polarization loss was only less than 5% after 10¹¹ switching repetitions. From the measurement of the depth profile and the microstructure of this capacitor, it could be convinced that single-layered PtRhO_y films behaved as high quality electrode barriers for PZT thin film capacitors.

© 2004 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: PtRhO_y; Electrode barrier; Pb(Zr_xTi_{1-x})O₃; Ferroelectric thin film

1. Introduction

For the realization of high density ferroelectric memories (FRAM) devices, lowering stack height of capacitor in capacitor over bit (COB) structures [1,2] to 400 nm should be accomplished with the decrease in thickness of ferroelectric thin films and electrodes below 100 nm for successful node separation. Moreover, in PZT-based COB structures, the bottom electrode inhibits the diffusion of oxygen towards plug, such as n+ polycrystalline Si (poly-Si) or W, to reduce the contact resistance, as well as to enhance the polarization fatigue resistance. Several electrode-barrier structures have been proposed for the integration of ferroelectric memory devices. Among them, hybrid electrodes, such as Pt/IrO₂ [3] and Ir/IrO₂ [3,4], and Pt/RuO₂ [5] and multilayer electrodes, such as PtRhO_v/PtRh/PtRhO_v [6] and $PtIrO_{v}/PtIr/PtIrO_{v}$ [7], resulted in negligible polarization fatigue for PZT based capacitors. However, development of a

* Corresponding author.

E-mail address: kblee@sangji.ac.kr (K.B. Lee).

simple and thin electrode barrier can be necessary from the practical aspect point of view.

In this paper, we show that a PtRhO_y thin layer itself acts as fatigue free electrodes, as well as diffusion/reaction barriers, for PZT capacitors. In addition, we present that the x in Pb(Zr_xTi_{1-x})O₃ affects the PtRhO_y electrode-barrier properties.

2. Experimental procedures

The electrode barrier of a PtRhO_y layer was deposited onto n+ Si wafers by means of the reactive rf-sputtering method using a Pt-10 wt.%Rh alloy target (PtRh, purity 99.99%) in Ar + O₂ ambient. The partial pressure of Ar and O₂ were 6.7×10^{-1} Pa and 2.7×10^{-1} Pa, respectively. The deposition rate of PtRhO_y thin films at rf-power of 50 W was about 10 nm/min and the thickness of PtRhO_y was about 120 nm. In order to investigate the effect of the substrate temperature (T_{sub}) on the electrode barrier properties of PtRhO_y, the substrates were prepared at various $T_{\rm sub}$ ranging from 50 to 650 °C. The sol-gel derived PZT thin films of about 240 nm-thickness, with compositions of Pb_{1.1}(Zr_xTi_{1-x})O₃ (x = 0.2–0.8), were deposited on these substrates by using a conventional spin-coating method, which was described elsewhere [8]. Post-deposition annealing was performed at a temperature of 625 °C for 1 h in O₂ ambient. 80 nm-thickness PtRhO_y top electrodes of 3×10^{-4} cm² area were deposited on the surface of PZT thin films using a shadow mask.

The *P–E* hysteresis loops were measured using a standardized ferroelectric tester (RT66A, Radiant Technologies) and also the polarization fatigue tests were performed using an externally generated square wave with amplitude of ± 5 V and a frequency of 1 MHz. The dc electrical current–voltage characteristics of these capacitors were measured using an electrometer/source (Keithley 617). The chemical binding states, as well as the compositional ratio, of PtRhO_y was determined using X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) spectroscopy was used to determine the crystallinity of PtRhO_y and PZT. Auger electron spectroscopy (AES) was used to investigate the depth profiles of the elements in PZT/PtRhO_y/Si films.

3. Results and discussion

Fig. 1(a) and (b) shows the XRD patterns of PtRhO_y deposited on n+ Si (100) wafers at various T_{sub} and PZT deposited on them ($T_{sub} = 400$ °C). The [111]-axis orientation was found for PtRhO_y thin films. The intensity of (111) peaks revealed higher at the substrate temperature of 300–400 °C, while the amorphous halo revealed remarkably, which implies the amorphous and crystalline phase are mixed in the PtRhO_y films deposited at low temperature (<150 °C). As seen in Fig. 1(b), the PZT thin films (x = 0.2–0.6) showed the randomly oriented perovskite phase, despite the [111]-axis orientation of PtRhO_y, while any per-

Fig. 2. Typical P-E hysteresis loops of PtRhO_y/Pb(Zr_xTi_{1-x})O₃/PtRhO_y/n+ Si (x = 0.3-0.7) thin film capacitors.

ovskite peaks in the XRD patterns of the Zr-rich PZT thin films ($x \ge 0.7$) were hardly observed.

Fig. 2 shows the typical *P*–*E* hysteresis loops of PZT capacitors (x = 0.3–0.8), which are well-defined loops. The Ti-rich PZT capacitors ($x \le 0.3$) did not show the saturated *P*–*E* loops, whereas the Zr-rich PZT capacitors ($x \ge 0.8$) showed the negligible remanent polarization (P_r). The values of P_r , as well as the values of coercive field (E_c), of these capacitors were likely to decrease with increasing x in Pb(Zr_xTi_{1-x})O₃. The polarization fatigue behaviors of these capacitors were shown in Fig. 3. It was found that the values of the polarization loss of all PZT capacitors after 10^{11} switching repetitions were only less than about 25%. In addition, the negligible polarization loss ($\le 10\%$) was found for PZT capacitors around x = 0.5. Amongst Pb(Zr_xTi_{1-x})O₃ thin film capacitors, a capacitor of x = 0.4 has the superior polarization fatigue behaviors, which

Fig. 1. XRD patterns of (a) PtRhO_y deposited on n+ Si wafers at various substrate temperatures and (b) Pb(Zr_xTi_y)O₃ (x = 0.2-0.7) thin films deposited on PtRhO_y ($T_{sub} = 400$ °C).

Fig. 3. Polarization fatigue behaviors of $Pb(Zr_xTi_{1-x})O_3$ (x = 0.2-0.7) thin film capacitors. The inset shows the *P*–*E* hysteresis loops of a $Pb(Zr_{0.4}Ti_{0.6})O_3$ thin film capacitor before and after 10^{11} switching repetitions.

shows a lack of polarization loss even after 10¹¹ switching repetitions, as shown in the inset of Fig. 3. This capacitor showed the well-saturated P-E loops, where P_r and $E_{\rm c}$ were 22 μ C/cm² and 87 kV/cm, respectively. These values were nearly constant in various PtRhO_v electrode barriers deposited at various T_{sub} of 300–650 °C, as seen in Fig. 4. Otherwise, only the P_r decreased to $10 \,\mu\text{C/cm}^2$ for $T_{\rm sub} = 150 \,^{\circ}\text{C}$ and no *P*–*E* hysteresis loop, in addition, was found for a PtRhO_v electrode barrier deposited at T_{sub} of 50 °C. Such decrease of P_r with constant E_c in P-E hysteresis loops, as also shown in the inset of Fig. 4, could be easily demonstrated by using a resistor connected in series with a ferroelectric capacitor characterized by P_r and E_c . In the case of PtRhO_v/Pb(Zr_{0.4}Ti_{0.6})O₃/PtRhO_v/n+ Si capacitors, by changing the two probe contacts in the electrical measurement from top-to-bottom n+ Si to top-to-bottom

Fig. 4. The variation of P_r and E_c of Pb(Zr_{0.4}Ti_{0.6})O₃ thin film capacitors with the substrate temperature of PtRhO_y electrode barriers. The inset shows the typical *P*–*E* hysteresis loops of Pb(Zr_{0.4}Ti_{0.6})O₃ thin film capacitors having three different PtRhO_y electrode barriers deposited at 150, 400, and 650 °C.

Fig. 5. XPS spectra of Pt 4f and O 1s for PtRhO_y thin films deposited at various T_{sub} .

PtRhO_v, it could be easily found that such serial resistance effect arose mainly from the interface states between PZT and bottom PtRhO_v, deposited at low substrate temperatures (≤ 150 °C). We suggest that the existence of such resistive interface states between PZT/PtRhO_v is closely related to the chemical binding states, as well as oxygen content, on the surface of PtRhO_v electrode barrier, as shown in Fig. 5. The XPS spectra of Pt 4f and O 1s, respectively, obtained from PtRhO_v thin films deposited at various T_{sub} were shown in Fig. 5. It can be seen that the XPS peaks for Pt 4f7/2 are extending over the binding energy range of two binding states, namely PtO₂ and PtO (74.1 and 72.4 eV [9], respectively), in which the binding states of PtO in PtRhO_v increased with increasing T_{sub} , while those of PtO₂ decreased. From the compositional analysis of the XPS spectra, it was found that the atomic ratio of O to Pt (O/Pt) decreased monotonically from 2.3 to 1.5 with increasing the substrate temperature ranging from 50 to 550 °C, whereas the value of Rh/Pt remained constant at about 0.12.

Fig. 6 shows the typical polarization fatigue behaviors of Pb(Zr_{0.4}Ti_{0.6})O₃ capacitors having three kinds of PtRhO_y electrode barriers, deposited at T_{sub} of 150, 400, and 650 °C. For all these capacitors, the polarization loss after 10¹¹ switching repetitions was less that only 5% and the polarization fatigue behaviors were not dependent on the substrate temperature of PtRhO_y electrode barriers. This result implies that the pure serial resistance effect by the interface states between PZT/PtRhO_y does not affect the polarization loss by the polarization reversal. The leakage current of PtRhO_y electrode barrier deposited at 400 °C was about 2×10^{-7} A/cm² at a field of 200 kV/cm, which is comparable to that of PZT capacitors having multilayer electrode barriers reported earlier [7].

Fig. 6. Polarization fatigue behaviors of $PtRhO_y/Pb(Zr_{0.4}Ti_{0.6})O_3/PtRhO_y/n+$ Si capacitors having three different $PtRhO_y$ electrode barriers deposited at 150, 400, and 650 °C.

Fig. 7. AES depth profile of a PtRhO_v/Pb(Zr_{0.4}Ti_{0.6})O₃/PtRhO_v/n+ Si.

Fig. 7 shows the AES depth profile of $PtRhO_y/Pb(Zr_{0.4} Ti_{0.6})O_3/PtRhO_y/n+$ Si. This AES profile revealed the typical patterns of the polarization fatigue free capacitors [1], which showed the uniform composition profiles in the PZT thin film, especially the uniform oxygen profile up to the PZT/PtRhO_y interface. No diffusion of PZT elements could be also seen in the range of the PtRhO_y thin film, as well as in the Si wafer. This result indicates that high quality ferroelectric properties of PtRhO_y/Pb(Zr_{0.4}Ti_{0.6})O_3/PtRhO_y/n+ Si capacitors result basically in the high quality interfacial properties of PZT/PtRhO_y, which arises from the high quality electrode barrier properties of a PtRhO_y thin film itself.

4. Conclusion

We have investigated the $PtRhO_{v}$ thin films as electrode barriers for PZT thin film capacitors, as well as the characteristics of ferroelectric $Pb(Zr_xTi_{1-x})O_3$ (x = 0.2–0.8) thin film capacitors prepared on them. The sol-gel derived PZT thin film capacitors deposited on PtRhO_v/n+ Si $(PtRhO_{v}/PZT/PtRhO_{v}/n+Si)$ showed well-defined P-Ehysteresis loops, where the remanent polarizations, as well as the polarization loss, were varied with the ratio of Zr/Ti. Especially, $Pb(Zr_{0.4}Ti_{0.6})O_3$ thin film capacitor showed the superior ferroelectric properties with negligible polarization loss after 10¹¹ switching repetitions. The values of remanent polarization and coercive field were $22 \,\mu\text{C/cm}^2$ and 87 kV/cm, respectively. Such high quality ferroelectric properties of these capacitors are believed to be due to the high quality interfacial properties of PZT/PtRhO_v, which arise from the high quality electrode barrier properties of a $PtRhO_{v}$ thin film for PZT thin film capacitors. Such simple electrode barriers using PtRhO_v thin films should give great benefits in the development of future high density FRAM processing.

References

- [1] J.F. Scott, C.A. Araujo, Science 246 (1989) 1400.
- [2] R. Ramesh, W.K. Chan, B. Wilkens, H. Gilchrist, T. Sands, J.M. Tarascon, V.G. Keramidas, D.K. Fork, J. Lee, A. Safari, Appl. Phys. Lett. 61 (1992) 1537.
- [3] T. Nakamura, Y. Nakao, A. Kamisawa, H. Takasu, Jpn. J. Appl. Phys. 33 (1994) 5027.
- [4] K.B. Lee, S.B. Desu, Curr. Appl. Phys. 1 (2001) 379.
- [5] H.N. Al-Shareef, O. Auciello, A.I. Kingon, J. Appl. Phys. 77 (1995) 2146.
- [6] D.H. Bhatt, S.B. Desu, D.P. Vijay, Y.S. Hwang, X. Zhang, M. Nagata, A. Grill, Appl. Phys. Lett. 71 (1997) 719.
- [7] R. Vedula, C.S. Desu, S. Tirumala, H.D. Bhatt, S.B. Desu, K.B. Lee, Appl. Phys. A 72 (2001) 13.
- [8] K.B. Lee, S. Tirumala, S.B. Desu, Appl. Phys. Lett. 74 (1999) 1484.
- [9] G.M. Bancroft, I. Adams, L.L. Coatsworth, C.D. Bennewitz, J.D. Brown, W.D. Westwood, Anal. Chem. 47 (1975) 586.